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PREFACE

This report is based on five lectures given by Dr. I. N. Sneddon at
North Carclina State in April, 1963. The research reported here concerns
certain crack problems in the mathematical theory of elasticity. A group
of these problems were presented to us by Dr. George Irwin cf NRL at the
beginning of this sponsored research work; the present report concerns
the solution of some of these. Part of the research results presented in
this report have already been submitted in the form of three papers for
possible publicaticn.

Copies of this report are being distributed as directed. This project
is sponsored by AFOSR, ARO, and ONR through the Joint Services Advisory
Group. The present activity is under a grant number AF-AFOSR-LLL-63.

John W. Cell
Prcject Director
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THE EFFECT OF INTERNAL CRACKS ON THE DISTRIBUTION CF STRESS IN
THIN ELASTIC STRIPS AND CYLINDERS

1. Introduction.

~

The present report is based on a series of five lectures given
in the Mathematics Department of North Carolina State College in
April 1963, in which there was presented a connected account of some
recent researches in the classical (infinitesimal) theory of
elasticitys In particular the work done by the author and three
collaborators R, P, Srivastav, R, J, Tait and J. L, Welch in the
University of Glasgow during the preceding year is discussed in some
detail,

In 82 there is a discussion of the two-dimensional problem of
determining distribution of stress in a very long strip of uniform
width 2¢ which has a Griffith crack of length 2a situated symmetrically
in its interior. The stress field is supposed to be set up by the
application of a known pressure to the inner surfaces of the crack.

The equations of plane strain are used throughout (but the plane stress
case can be derived by a trivial change in the values of the elastic
constants), Two different kinds of boundary value problem are
considered,

In Problem (a) (treated in B2.1) we assume that the surfaces of
the strip are constrained in such a way that the normal component of the
surface displacement and the surface shearing stress both vanish; this
problen is exactly that of determining the distribution of stress in an
infinite two-dimensional elastic medium containing an infinite row of
identical Griffith cracks equally spaced, This boundary value problem is
solved by reducing it to the solution of a peir of dual series relations
which is in turn shown to be equivalent to that of an integral equation
which can be solved easily for an arbitrary distribution of internal
pressure, In 82,2 the solution in the case where the internal
pressure is constant is considered in more detail; the critical value of
the internal pressure is caloulated using Griffith's criterion
[formulae (2.35) and (2.36) below] and the effect of the fact that the
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strip is of finite width is illustrated by calculating the variation
with a/c of the percentage change in the value of the critical
preasure from the value in the 'infinite' case ¢ »» a (Table 1 and
Pig. 2 'below). The shape of the crack and the variation of the normal
component of stress across the line of the crack are alsc shown for some
non-zero values of the ratio a/c (Figs. 4 and 5 below).

In Problem (b) (considered in 82.2) it is assumed that the
surfaces of the strip are free from applied stress, Here the
analysis is more complicated; the problem is again reduced to that of
solving an integral equation - in this instance a Fredholm equation of
the second kind - but the equation does not appear to have an exact
(analytical) solution so that in any given case it would have to be
solved numerically,

The discussion in §3 is an immediate generalization to the case
of axial symmetry of the methods used in 82 s0 that the problem is now
that of determining the distribution of stress in a very long circular
cylinder which has an internal penny-shaped crack which has its centre
lying on the axis of the cylinder and its plane normal to that axis,
The stress field in the cylinder is due to the application of pressure
to the surfaces of the crack. Again two kinds of problem are
considered,

In Problenm (_a_) (discussed in §5.1 and by en alternative method in
93.2) it is supposed that the shearing stress on the surface of the
¢ylinder and that the radial component of the surface displacement are
both identically zero, For an arbitrary (but axisymmetric) distribution
of pressure on the crack surface the determination of the various
quantities of physical interest is made to depend on the solution of a
Fredholm integral of the second kind. An iterative solution of this
equation with the free term corresponding to a constant internal
pressure and valid for small values of the ratio g/c is given in §3.3 H
for values of a/c lying between 1 and 2 it is necessary to solve the
question numerically end numerical values of the unknown function
corresponding to a set of values of a/ ¢ are reported in the same
section. From this soclution it is a simple matter to calculate the
variation with a/c of the critical pressure required to cause the
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crack to spread and that of the stress intensity factor introduced by
Irwin; these are shown in Pigs, 9 and 10 respectively. The results
80 obtained are compared (in Figs, 11 and 12) with those obtained
in the analogous case in plane strain (§2.1 above) and it is shown
that as far as an "engineering" approximation is concerned the
size effect in the axisymmetric case can be simply gauged from that in
the plane strain case,

Finally in Problem (b) (treated in B3..) it is assumed that the
curved surface of the cylinder is free from applied stress.
Again the problem of determining the quantities of physical interest
corresponding to an arbitrary axisymmetric distribution of stress
on the crack surfaces is reduced to that of solving a Fredholm
integral equation of the second kind but now the actual
calculations are more complicated since the kernel of the integral
equation is a function of the Poisson's ratioc of the material
of the cylinder., Again an iterative solution and numerical

solutions for a constant internal pressure (and for Poisson's

‘ratio equal to ) are given and the variation with a/c of the

critical pressure and the Irwin stress intensity factor
calculated (Of, Pigs. 16, 17). These two diagrams also afford
a comparison between the solutions of Problems (a) and (b); if
a &% ¢ there is little difference between the size effects

in the two cases but if a » ¥ ¢ the effect is more pronounced
in the case in which the radial component of the surface dis-
placement of the cylinder is zero.



2, Distribution of Stress in a Strip of Finlte Width containing a
Griffith oreck., -

We begin by considering the distribution of stress in a very
long strip of uniform width 2g which has a Griffith crack of length

2a in its interior. We shall assume that | g
the crack is perpendlicular to the edges of

P —
the strip and that its centre lies on the

central line of the strip (Cf. FPig, 1) and
that the state of stress in the strip is

due to the application of pressure of ' (o-'?') [(O'C)
prescribed value to the surfaces of the ] 0O v
crack, In addition we shall make the usual
assumptions of the classical (infinitesimal)
theory of elasticity and, in particular, we
shall solve the equations corresponding to
a state of plane strain in the strip, The
results in the case of plane siress can easily T-"cs.l

be deduced by a trivial change in the values

of the elastic constants, We employ the

notation of Green and Zerna (1954).

We shall consider two types of boundary value problem, In
problem (a) we assume that the surfaces of the strip are constrained
in such a way that the normal component of the surface displacement
and the shearing stress both vanish, This problem has been
considered by Westergaard (193 ) and Green and England (1963) - in
the form of a discussion of the state of stress in an infinite thin
plate containing an infinite row of identical Griffith cracks evenly
spaced; the solution given here is that derived recently by Sneddon
and Srivastav (1963) which givea the results in a form suitable for
numerical caloulation and has the added advantege that it can be
generalized to provide the solution of the analogous problem in
three dimensions (Cf. 83.2 below), In problem (b) we assume that
the surfaces of the strip are free from stress, This problem does
not seem to have been discussed previously; again we follow the
method recently devised by Sneddon and Srivastav (1963) whioh is a

L/\
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generalization to the elastostatic case of a method used by Sneddon (1962)
in the solution of a simple problem in electrostatics,

2.1, Solution of Problem (a).

In the disocussion of the first of these two problems we take our
unit of length to be such that the width of the strip is 27 (i.e,, in
the notation of Pig, 1 we take ¢ = # ), The problem of determining
the atress in the neighbourhood of the orack is then obviously
equivalent to that of determining the stress in the semi-infinite
strip =7 ¢ y <« 7 , x3 O when the boundary x = O is subjected to the
conditions

aw =0, -T Sy € 7, (241)
0, = 28 (y), -a< y < a, (2.2)
u =0, a<|y|l s (2.3)

-

where u denotes Lam§'s constant, and the function f(y) is prescribed.
If we assume that the edges of the strip are constrained in such a way
that the normal component of the displacement and the shearing stress
both vanish then we must ensure that when y = + 7,

[+ =u =O, 0<x<w, (2.14-)
We further assume that as x = « the components of atress and
displacement all tend to zero, We shall satisfy this condition by
finding a solution which satisfies the conditions

4 =u :0’ -TSyen (205)

on the line x = § and then finding its limiting form as & =P «
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If we assume expressions of the form
u =%u°(1 --;5) - Z a, cosech(n §) {n( 8 - x)cosh n(§ - x) -
n=o
~(2-2n +ndcoth nd)sinhn(s - x)} cos(ny) (2.6)
u, == 5‘ ancosech(nE)){n(& - x)sinhn( 8 = x) + (1 = 27 - n&cothnd)x
e
x cosh n( & - x)} sin(ny) (2.7)

for the components of the displacement then (if we are considering plane
strain) the components of stress are given by the equations

o (1 =n)u y‘w
-4 =_—_——-—°— - nancoseoh(na){(‘l +n6°0th nﬁ)x
]

2u 2(1 -2n) 8 =

x cosh n(8§ = x) - n(8 - x)sinhn( —x)} cos ny

A — z na cosech(n&){ﬁ - ndcoth n§) x
2u 2(1 -2n)8 n

x coshn(& =x) +n(d - x)sinhn(s - x)} cos(ny)

00

= . Z n® a oosech(n&){(& - x)cosh n( & - x) - Scothnd x

Nwyq

x sinhn(§ - x)}' sin(ny)
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where n denotes Poisson's ratio,

This solution obviously satisfies the condition (2.1) on x =0,
the conditions (2.4) ony = + = , and the conditions (2.5) on x =5 .
Also on x = O we have the expressions

u:=2(1 —n){%a°+ Z a cosny}

n=q

2::__%:1110- 5__’” ne {1+k(n6)} cos ny
vhere u, 2(1 = n)°
L S (2.0)
° 2(1 - 1) (1 -2n)s
and
k(E) = M . (2.9)

2
sinh E

find a sequence of constents { a satisfying the dual series relations

Hence we shall have solved the re?eva.nt boundary value problem if we can
n

a a, + na {1 +k(n5)} cos(ny) = f(y), O< y< a, (2.10)
ta, + Z a, cos(ny) = 0, <Yy ST, (2.14)

If we now consider the case of a long strip so that 6 >> 7 we
find that equations (2.6) and (2.7) reduce to

o

uz.-.-i-uo( -f) + “Z {aﬂ 2(1 = n) +nx}e"nxcou(ny), (2.12)

»4
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o0
u, = - Z e, {(1 -2n) - nx}e'nx sin(ny), (2.13)
Nay
and that the corresponding components of stress are given by the
equations
o0
9 -
—F - -Faa, - ynan(1+nx)e "* cos(ny), (2.14)
2u ]
nx=y
o0
o 1 - nx
=-%tpe - na (1 ~-nx)e” " cos(ny), (2.15)
24
N=q
. -]
<oy Z n®a e sin(ny), (2.16)
2u
N=4
where the constant f is defined by the equation
_ 274 -
(1 -2n)8
and the constants {a "} satisfy the dual series relations
o
%aa°+ z na, cos(ny) = f(y), O<sy <a, (2.17)
N=1q
-]
3 a, + Z a, cos(ny) = 0, a<ys<m, (2.18)
N=q

In the case of an infinitely long strip we may take a =0,
To solve the peir of dual series equations (2,17) and (2,18) we



make use of a method due to Srivastav (1963). We make the
assunption that when O < y < a

e, + Z e, cos(ny) = cos(} y)[

Nx4

a ~(t)dt

y A(cos y - cos t)

(2.19)

and reduce the problem to that of determining the function g(t)., From
the theory of Fourder series it follows that

a, = V2 [: g(t)at, a =71-2- [: g(t) Pn(cost)+Pn_1(coa€'d: )
2,20

where Pn denotes the Legendre polynomial of degree n,
Now if a = O in equation (2.17) we may integrate both sides of
the equation to obtain the relation

Z ansinny=F(y), Osy«<a (2.21)
N=xq
where the function F(y) is defined by the equation
'}
Fy) = / £(u) d u. (2.22)
o
If we substitute from equations (2.20) into the left hand side of

equation (2.21) and interchange the order of integration and summation
we find that equation (2,21) is equivalent to the integral equation

[ : 8(y, t)g(t)at =PF(y), Os<y<a (2.23)
(o]

where the kernel 8(y, t) is defined by the relation

8(y, t) = ﬁﬁi [Pn(oo: t) + Pn_‘(ooa alin(ny)‘ (2,24)
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It is easily shown that the funoction

S(y, t) = coalt yizly - 9 (2.25)

B A/(cos t = cos y)

has as its Pourier half-range sine series in the range O s y < 7 the
expansion on the left hand side of equation (2.24). Substituting this
expression for the kernel into the integral equation (2.23) we find
that it reduces tc the form

=F(y), Osy<acaw (2.26)

ju g(t) cos(: y)dt

®  A(cos t - cosy)

which can easily be shown to possess the solution

o4) =Ei +  PF(y)sin(} y)day

, (2.27)
7 dt Jo A (cos y - cost)

where F(y) is given by equation (2.22),
Prom equation (2.12) we have that the surface displacement of
the crack u(:’ (y) =u . (0, y) is given by the equation

u::') (y)=2(1-n){%ao+ iancos(ny)}, O< y<a

N=y

so that it follows from equation (2.19) that

2P @) =2 - ) eelhy) [T ——iltlat (2.28)

* y A/(cos y ~ cos t)'
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Similarly the normal component of stress across the line of the
crack a‘:: () = ¢ - (0, y) is given by the equation

[

a(:: (y) = -2u z na cos(ny)=-2u a—a&-{% a + Z a sin(ny)}

n=4q

and substituting from equation (2.19) we find that this is equivalent
to the equation

O (o) - 0, & ! [ —s(t) at i 2.2
AR {cos@ n |, e t)} (2.29)

The other physical quantity in which we are interested is the
strain energy of the crack in the case in which the normal stress
across the surface of the crack is constant . This is easily

shown to be given by the equation

a
{0) )
W--2 [0 o (y)uf (y)ay

If we substitute the expression (2.28) for u: (y) into this equation
and interchange the order of the integrations we find that

w=l+/f2-(1 - n)p, /atan(% t)dt[t cos(f u)du . (2.30)
E o

o A(cos u - cos 1)

2.2. Orack opened out by constant internal pressure,

If the crack is opened out by a constant internal pressure p _,
then, in the notation of equation (2.2) we take f£(y) = po/z p. It
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follows from equation (2,27) that in this case we need to evaluate

dl/at where

=

[t x sin(% x)d x

©  A(cos x -~ cost)

or, what is the same thing,

G-tz ) &,

where 7 = cos 7 t and

H
H

! (cos™! z)dz
2/\/§[T Vo)

Using the formula for integrating by perts we find that

[1 logE'. + A(2* -‘rz)]dz
T V(1 =29

=cos 'T, log T}

1=2M2{

from which it follows that

%:-Lf_l-=- N2 7 sec(f t)

and hence that
at _
3t = A7 tenlt t).
Prom equation (2.27) we can therefore deduce that

g(t) = -;—;—: tan(} t).

(2.31)
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The surface displacement u() (y) of the crack is then given by
equation (2,28) in the form
2 M2(1 ~n*)p tan(} t)dt
W () - 2 cost ) [
y MN(cos y = cos t)
The integration is elementary and it is readily shown that
41 - n?)p cos($ y) + A/(cos®* %y - cos® % a)
ug’) () = — loz{ }
cos % a
lv] < = (2.32)

S8imilarly the normal component of stress across the line of the crack
is given by equation (2.29) in the form

1

o) - 2 cos a F sec(}t) tan(ft) at
o) = 2p°ay{ %y/o V(a0 by - se?h ¢ } '

a<|yl s

3 - t=a
= =2p, 35 [sin (sect t cost y)]
t=0
sin(% y)
-3, -1}, a<lyl sm. (2.33)

¥(cos® % a - cos®  ¥)

In a similar way equation (2,30) yields the formula

b A/2(1 = n?)p? [ an t)dt/t cos(ty) ay

o A(cosy - cos t)
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for the elastic energy of the crack. Now
t ocos(ty) ay 1 t cos(ty) ay T
o M(cosy=-cost) a2 Jo ¥ (ain® 1 1 - sin}y) T N2

80 that in our system of units

L1 =n3)ap?® ra 8(1 = n®*)pcn
W= °/ tan($ t)at = ————————2 10g(secta).
E o E

In conventional units, if 2c is the width of the strip

8(1 - n®)p? c? ra
W = ——— log@ec — ) . (2.34)
wE 2c

If the surface tension of the material is T, the surface energy of the
crack is U = 4a T and Griffith's criterion

5% (W-10) =0

for the oritical walue Por of P, when the crack length is 2a leads
to the equation

Zz
Pcr = { ET cot 'E'I } .
(4 =n%)e 2c

In the infinite cese (i.e. ¢ =w ) the corresponding value is known to be

o). (—2m_ ) :

L 21 - n¥a
80 that ws may write the last result in the fprm
P, = Pop v (8/0) (2.35)



fostt st e mmu IR BEN T A N BB P OB o

g

15

where

oj

w(z) = {guz cot(guz)} (2.36)

If we denote by NI the percentage change in the value of the

oritical pressure Por from the value pg:) corresponding to the

infinite case (c >> a) so that

)
N(a/e) = E—Te , 4o
PGI‘
then
- %
1(w/o) = 100 {1 - [Boot 2] 7). (2.57)

The variation of the functions w and I with a/c is shown in

Table 1 and that of I is shown graphicelly in Fig. 2,

We now return to the consideration of the shape of the crack and
the value of the normal component of stress across the line of the
crack, Putting y equal to zero in equation (2.32) we find that

u(:) (O) = € , the depth of the orack is given by the equation

e a(a/ec) (2.38)

where ¢®)  genotes the depth of the crack in the case ¢ >> a and is
given by the equation
2(1 -n)p, @

t(&) - (2059)
E

(in conventional units) and the function d(z) is defined by the relation

e) = - 20g tan {37 (x4 0)] (2.40)
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Table 1: Variation of the functions w and NI with a/c.
8/c w I
Ot 0.9958 0.42
0.2 0.9833 1.67
0.3 049617 3483
Ouls 0.9300 7.00
0.5 0.8862 11.37
0.6 0.8274 17.26
0.7 0.7489 25.11
0.8 0.6389 36411
0.9 0.4732 52,68
0.92 0.4272 57.28
0.94 0.3735 62.65
0.96 0.3080 69.20
0.98 0.2256 77 ks
0.99 0.1562 84..38

16
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Figure 2

Fig. 2 The variation with a/c of w, the percentage increase in the

critical pressure over its value in the case ¢ = =, for constant internal

pressure,
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Values of d(z) for a range of values of z between O and 1 are listed
in Table 2, and the variation with a/c of ¢ , the depth of the crack,
for a fixed internal pressure P, is shown in Fig. 3,

Written in terms of conventional units equation (2.32) takes the

form

T a

) () = 2, gs’-{log [cos( )+ A(cos® BE - cos®Z2 ):, -

- log cos( -g% } . (2.44)

The variation of the ratio u(:) (y}/f () with y for four values of the
ratio a/c is shown in Fig. 4; the curve corresponding to the value

a/c = 0 is an ellipse ,
u(;) (y) = PG (1 - y¥a?)2

and it can be seen from the curves of Fig, 4 that even a substantial

increase in the ratio a/c does not appreciably affect the shape of

the curve although, (as we should expect on physical grounds) the

"minor axis' increases by nearly 80% as a/c increases from O to 0.9,
Similarly, it follows from equation (2.33) that (in conventional

units) the normal component of stress across the line of the crack is

given by the equation

0(:1(5') = P, {sifl( -;% ) [cosz ( Z—% ) - cos®( 2 ﬂ %-1} s

a < |y] < e (2.42)

The form of the variation of o::)(y) with y in three cases is shown
in Pig. 5, (the same value of p, being chosen in each case). As we
should expeot, we find that the shape of the curve is much the same
whatever the value of the ratio a/c but the intensity is greater the
higher the value of a/o.
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a/c

0 10

Figure 3
Fig, 3 The variation with a/c of the depth, &, of the crack in the

» 2
case of constant internal pressure P e( )- 2(1-n )poa/E is the.depth
in the case a/c = 0.
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p ac = 0.5

X ac = O
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116

1.2

108

04

y/a

o) 02 04 06 08

Figure |4

[

Fig. 4L The shape of the crack in the case of constant internal

10

ressure

P, for four values of a/c. The unit on the vertical scale is e(w defined

as in Fig. 3.
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Figure 5

© (y) the normal compone
£ constant internal

nt of stress

y of oyy

Fige 5 The variation with
k in the case O

across the 1ine of the crac
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The stress intensity factor N is defined by the equation

N lim 4/; a;; (a + 1)

r-»0 +

1
c 7a )
L (u tan Zc) °

If ¢e>>a N takes the walue
(o) 94 %‘
N =p (% a)

it

]

so that we may write the percentage increase of N over N(”) as

)
iy = ale/e)

where

n(z) ={§z-tan(-’§vz)J% -1} x 100,

The function n(z) is tabulated in the second column of Table 2:



Table 2: Variation of the funotion d(z) with z.
Z a(z) n(z)
0 1,0000 0,0
0.1 1,004 1.0
0.2 1.0166 1.6
0.3 1.0393 4,0
0.4 1.0730 7.5
0.5 1.1223 12,9
0.6 1.1928 20,9
0.7 1.2975 3347
j 0.8 14665 56.6
. 0.9 1.7982 112
: 0492 1.9139 134
| 0.9% 2.0685 160

23
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2,3, Solution of Problem (b).
In the second problem the boundary conditions (2.1) - (2.3)
remain but the conditions (2,4) are replaced by the conditions
o, = 90.=0, y=4teo, 0< x<w (2.43)

t IV 1Y

If we denote by 3' s and y— c the Fourier sine and cosine

transform operators

T {“’ 3 x‘>€} ='/§[:¢f(x,y)sin(€x)dx

?c{w ; x-’E} =/§/: ¢ (x,y)cos(Ex)ax

then we can write the boundary conditions (2.43) in the equivalent
forms

3‘8{ [ ow]y=<> ;X E.] =.3'c {[ow]yw; x> 5} =0 (2.44)

We reduce the solution of this problem to that of a Fredholm integral
equation of the second kind by a method similar to that employed recently
by Sneddon (1962) in the solution of a boundary value problem of mixed
type In electrostatics., We assume a stress field of the form

u_ = - 1—5-3/_-2-;/:{[f(e) +2(4 -n)s(Eﬂcosh(Ey) + Eye(g) x

x smh(ay)] & sin(zx)ag +1-y-,/§[:€" $(g) x

x [2(1 -n) + ¢ x] o~ $% cos({y)al, (2.45)
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sy = - 135/ 2 [ - 1 - ense sore) + st
xcosh(&y)} E™! cos(Ex)IE =~ Lﬁtﬂ'/%-‘[:§”¢(5) x
xE-?n - Cge"gxsin(gy)dg, (2.1-1-6)

where E, as above, denotes Young's modulus, n denotes Poisson's ratio
and f, g, and ¢ are functions to be determined from the boundary
conditions, If we substitute these expressions into the stress-strain
relations we find that the corresponding stress components are

o =/1:§/: {(f + 2g)eosh(Ey) + & ygsinh(Ey)} cos( € x)ag

wal

5 ]w $(£)(1 + £x)e” S % oos(g y)ag, (2447)

R / f-[” {f cosh(E y) + & ygsinh( E,y)} cos( & x)d

‘4/—2 /“¢(€)(1 - £ x)e” ¥ oon(¢ y)ag, (2.48)
T do

% =4/'-5-f:{(f + g)sinh(E y) + & ygoosh(E y)} sin(€ x)d &
= @xf: £6(2) o™ € * ain(g y)ag . (2.49)

This solution therefore has the following properties:-
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Onx=0 wu,= i‘i—iﬁﬁf('cp(c)m( ¢{y)ag,
=/§/~{(f + 2g)cosh(Ey) + Eyg sinh(E y)} a& -

204 [*, . .
-35/°§ ' ¢(¢)sin(L y)acL,

_gg:/w {o(Lcos(gelal
(EZ + Cz)z

?s {":u ; x“)€}= + {(f + g)sinh(Ec) +Ecgeosh( Ec)} -

- 55/ g ﬁgzsinigcldg
EZ + g2)2
It follows from these equations that the boundary condition (2.1)

is automatically satisfied and that the remaining conditions (2.2) and
(2.3) on x = 0 are satisfied if we choose f, g, ¢ such that

4/2[ {(f + 2g)cosh(Ey) +« Eyg sinh(Ey)} ag -

- f%/ {T9(sin(ty)ag = - p(y), O<y<a, (2.50)

/ £7'¢ (L Joos(¢y)aL =0, a<ysec (2.51)
0
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where we have written p(y) for 2uf(y). Similarly the conditions
(2.44) on y = & ¢ will be satisfied if

f cosh(Ec) + E ¢ g sinh (Ec) = -211(5) (2.52)
(£ +g) sinh(Ec) +Ec g cosh (Eo) = 2i,(E) (2.53)

where the functions i (E), i (E) are defined by the integrals

i<a)--ﬁ-[éﬂﬂﬁ°ﬂm 1(e) - &5 L‘l(‘f-lin-(f-))ﬁ (2.58)
+ £ 2 4 2

If we make the representation

¢(¢) =¢ / : t ¢ ()3, (Ct)at (2.55)

of the function ¢ (§) then 1t is easily seen that the equation (2.51)
is satisfied whatever the form of the function ¢ (t) but that
equation (2.50) is satisfied only if

v t) 4 ®
ﬁ-f(-}&)-:—f;- , {(f +2g)cosh(Ey) + Ey g sinh(Ey)} a

1]

=,/-§ »(y), 0Osy«<a,

If we integrate both sides of this equation with respect to y from O
to y( < a), we see that it is equivalent to the equation

[: A/t(yz -dt:) -[: {E-'(f + g)sinh(Zy) +y g cosh( Ey)} as

=P(y)o Ogy«<a
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where

P(y) =/§[" p(t)at, Os<sy<a, (2.56)

Regarding this as an integral equation of Abel type for ¢ (t) in
terms of known functions f, g, P we see that

d rt y sinh(E y)dy
atdo H(t2-y?)

+

2 re
£ (t) = -[ £ (¢ + g)ak

2 pre d rt y2 cosh(Ey)dy 2 4 -y P(y)dy
et AL
7da atdo  WH(t? -y?) 7 dto #(t%-y?)

Using the results

2 a tysinh(?:;y)dy
- — - =&t I (&t),
7 atdo H(t™ - ¥y )

2 a4 ¢+ y° cosh(Ey)dy
- = + g ’
7w dt Jo V(tz-yz ) tE[o( Et) EtI1( ti)

24d pv yPRyay /t/t p(y)ay
satdo #(tP-33) N ¢ lo N -3

we find that the relation between ¢ , f, g and p ocan be written in
the form

¢ (t) =[” {(f +2g)I (Et) + g8t 11(51;)} ag€ +

O
2 /‘ p(y) dy
../ =
b3 [+]

V(-39

(2.57)

On the other hand if we make the substitution (2.355) into the
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expressions (2.55) for the integrals 11(&; )y 1,(E) we find that
these integrals can be written in the form

a a oi
i1(E)=§ / u ¢ (u) i, du, iz(€)=-[ ugl!(u)—-;-du

o} oc

where 19 wcos(¢ c)J°(§u) dC.
i}(E,u, C):"""gb *

7 3 Jo E2,. (°?

The integral occurring on the right hand side can be evaluated by
formula (14) on p.45 of vol.l of Erdelyi (1954) to give

is(e, u, c) =1§a—ag {s‘:-,‘e"cE Io(EuE} =32--o.3-cE X
<[t - e (e « Gul(ew ]
so that

1(g) =} ge8 [a ug(u) (1 -c&)X (Eu) + Eu 11(zu)}du (2.56)
o

1(g) =g e / " a ) {(2 - cE)I (Eu) + Bu 11(au)} du (2.57)

Now if we solve equations (2,52) and (2.53) we find that

f(E) = -250 +:inh(2€°){[E ¢ cosh(Ec) + sinh(Ec)J x

x 1 (&) + &c sinh(&o) 11(5)} (2.59)
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8(2) = b {ainh(ec)i (g) + cosh(g o)1 (g} (2.59)
2E o + 8inh(2E o) 1 2

If we substitute from equations (2.56), (2.57) into equations
(2.58), (2.59) and insert the resulting values of £(&), g(&) into
equation (2.50) we find that the integral equation for the
determination of the function ¢ (t) is

a

v (t) - / ¢(u) K(t, u) du=q(t), Ostca (2.60)
(o]

where the kernel K(t, u) is defined by the equation

K(t, u) =u/ A {(20252—6c€ +5+3e-2°€)x
o 2Eoc +sinh(2Ec)

X I(80) I(8%) + (3 - 208+ ) Eu T (E)T(E )

rEEI(ew) I(e0)] + 2eturI(Ew) I (50)] (2.61)

and the free term is defined by the equation

_ /2 [" _=)ay
a(t) _/: [o VR (2.62)

In the case in which the internal pressure p(y) is a constant
P,» 8aYs We have q(t) = (%w)% P, » 80 that if we write

4 (4) = o )tp p (o) (2.63)

we find that ¢, (t) is the solution of the Fredholm equation
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¢!1(t) - fa ¢, (v) L(t, v)dv=1, Octsa (2.64)

where o = a/c and

L(t, v) = c K(ct, cv)

oy [ —SeL {(2;‘ =60+ 5 +3e7X)I (¢v)I (£1)

o 2{ + sinh 2¢
¢ (3 - 20 4 ) tr 1,0, 6 + LT, (E0T,(80)]

+28% tvI (ev)I( Ct)}- (2.65)

An approximate solution of the integral equation (2.66) is
a
5 (8) =1+ / L(t, v)dv. (2.66)
-]

Using the results

aI‘(Ca) «?I(fa)

: (2.67)

a a
j vIo(gv)dv= ,/ v2I1(§v)dv=
° 0

we find

a o
L(t, v)av = [ -z-—{——-;d {(242 ~ 6745 +367%) x
/ # WOV =R, 2 eim 2 o

x I,(CG) Io(Ct) +(3-20 + e_2§ Ix

(61,60, (00) +04 T,€D,(88)] + 267801, (c)T, (58
| (2.68)
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3, Distribution of Stress in a Cylinder containing a Penny-Shaped Crack,

~

We shall now consider the distribution of stress in an infinitely
long ciroular cylinder which has a penny-shaped crack in its interior
with the centre of the crack lying on the axis of the cylinder and its
plane perpendicular to that axis. *

(cf. Pig, 6). We shall suppose that —— >
the deformation in the cylinder is
produced by the application of the

pressure to the surfaces of the crack,
As in the two-dimensional case we shall
consider two types of boundary conditions
on the curved surface of the cylinder,
In the first problem = denoted by
problem (a) here - we suppose that the
shearing stress on thls surface and the
radial component of the surface dis-
placement both vanish; this problem

has recently been discussed by Sneddon F“Q 6

and Tait (1963) and we shall follow that

solution here, In the second problem -~

called problem (b) below - we assume that

the curved surface of the cylinder is free from stress; this problem has
been considered recently by Collins (1962) and by Sneddon and Welch (1963),
We shall outline the method of the latter paper here,

5¢1s  Solution of Problem ‘az.

If we take the radius of the crack to be our unit of length, and the
radius of the cylinder to be ¢ ( > 1), then the problem of determining the
distribution of stress in the neighbourhood of the crack is equivalent to
that of finding the distribution of stress in the semi-infinite cylinder
p € c, z 3 O when its plane boundary z = O is subjected to the conditions

dpz = 0, Osp <oy (3-1)
Opg = -2uf(p), O<p <1, (3.2)
uz = 0, 1< p ¢ (303)
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‘where i is Lamé's constant (rigidity modulus) and the function f{p) is
prescribed. If we assume thet the cylindrical surface is kept fixed then
on P =c¢ we must have
W= 0, =0, 0 sz <o (3.4)
It is well-known [Of. Sneddon (1951), p.505] that a solution of
the equations of elastic equilibdrium in the sxially symmetric equation is

given by the equations

2 a
U = = .a_l, u -_--1-{2(1-17)‘72)(-‘8"&}, (3.5)
2y 3pdz 2 2u az?

where x( p, 2) is an axisymmetric biharmonic function and n is Poissan's
ratio. The components of the stress tensor can be determined from the
stress-strain relations; we have .

2

2
=T (v - E], o, <2 {0 - 0wy -2
PP 5z dp Pz 3p 3z

.2.{ 2 :L?x} .a_{ 2 .«”z_x}
0, == {nV2yx-~ o = (2-n)v¥x. .
® 3z p 9p P ez 9z 9z°

A sultable type of biharmonic function for a problem of this type is
defined by the equation

X = =24 [”a"{[A(z) “ 1t = n)B(E)T (&0) - EAB(E)T, (86)] sin(Ea)a
~2u f g R(2)(2n + E2)e™ I, (E0)aE, (3.6)

where A, B and F are functions of & alone, A solution of this form
automatically satisfies equation (1.,1). The corresponding expressions for

L. and u z on the plane z = O are given respectively by the equations

Q
H

az = "2H [ “E{CA(@ - 2nB(8)) 1, (0) -& pB(E)T, (E.p)}da

-2y / ”F(E)Jo(ap)di, ' (3.7)

4
H

g =201 = 1) /};' P(g)J (&p)aE. (3.8)
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Prom these last two equations it follows immediately that the
boundary conditions (1.2) and (1.3) are satisfied if A(E), B(g), F(g) satisfy
the dual integral equations

f F(E)I (ERaE +f [I}(a) - 2nB(z—;]I (80) - pB(E)I (Ep)}a&; £(p)y 0 <p<1,

f £ 'F(g)J, (Ep)ag = O, 1<p <e.
]

It is known [Gf. Sneddon (1960)] that the second of these equations is
automatically satisfied if F(E) is written in terms of an unknown function

g(t) through the equations
#(g) =g / ' g(t)sin(gt)at, g(0) =0 (3.9)

and that if we substitute this form into the first equation of the pair
it reduces it to the relation

[p g'(t)at

o W(p® - 27 £(p) - [oa{:[A(a) - 2n8(8) )1, (& o) —apB(a)I,(ap)} ag

which can be thought of as an Abel type integral equation with solution

060 -] Ao

where h(t) is defined in terms of f(p) by the equation

2 /t pf(p)dp

(t) == (3.10)
»9 Kt = 0D 1

Making use of the results
/» PL{Ep)ap sinn(EL) v p?I (gp)dp &t cosh(§t) - sinh(gt)
M2 =0 8 o MR -p?) g

we £ind that the relation connecting g(t) with A(E) and B(Z) may be written
in the form

g(t) = h(t)-2 [ f[A(a) + (4 -2n)B(e:ﬂs1nh(at) - EtB(g) oosh(zt)}aa(sm)
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Purther, if we substitute from equation (3.9) into equation (3.8)
we £ind that the normal component of the surface displacement is given
by the equation

u® (p) =2(1 - n) s 0<psgi (3.12)

} b W3- p%)’

Another expression of pﬁysical interest is the energy W required to
open out the crack, This is given by the equation

14
W=1+1ruf pf‘(p)u,o (p)dp.
[+

If we substitute the expression (3.12) for u: (p) and interchange the
order in which we perform the integrations we find that

W=ba?u(lt - 1) o(c) (3.13)
where the function v is defined by the equation

1
oo™ = [ ne(slas, (3.14)
o

The expression (3.13) for the energy W is derived on the assumption
that the unit of length is the radius of the crack., If the length of
the crack were a this expression would be modified by multiplying the
right hand side by a’> , i.e. we should have

W=ba?u(l - n)w(a/c)e’. (3.15)

In particular, if a constant pressure P, is applled to the crack,
£(p) = P,/24 and so we have

Pt
h(t) m —— (5.,16)
wu
If we write P
_ 8(t) === ¢(t) (3.17)
2u
we find that
8p(1 - n®)
w = ——-2———-———- a3 wi(a/c) (3.18)

3E



sy smmm S D D D A e e

-

36
where

w, (™) =%u['t¢(t)dt. (3.19)

The Griffith criterion that the crack may spread is

= (W-1) =0 (3420)

where U, the surface energy of the crack, is given in terms of the
surface tension T of the material by U = 27a® T, This leads to the
expression

- ___zﬂ__‘% e .
Py, = {2(1 . nz)J 2 (a/c) (3.21)

for the critical value of the applied pressure to cause the crack to
spread when its radjus is a&. In this equation the function 01(x) is
defined by the equation

a () - (o0 + $x0100) . (5.22)

If ¢> >a, the critical pressure takes the value

(=) { rET }%
er 2(1 -nz)a

80 that we may write equation (3.21) in the form

=) (o). (3.23)

Per = Por

Equation (3.11) gives one relation comnecting the unknown functions
g(t)s A(E ), B(£) and the knom function h(t). The two remaining
relations are given by the conditions on the curved surface p = o, It
is easily shown that the values of °p3 andup on the surface p =o¢
corresponding to the form (3.6) for x(p, z) are given by the equations

[c,, ,2 - -2u2/: CF(L)e™ ¢ 25 (ge)ag

- 2us[ & [f@ s 201 - n)a(e])3, (o) - goB(0)T (600 ] ¢

sin(&z)ag (3.24)
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[u"]p-_-c = '/“5-'F(C) 1-2n-z J1(§c:)e-§z a
o {B@ « ats - mntelz (eo) - zenez (o) conteaz. (5.29)

If we take the Fourier sine transform of both sides of equation (3.24)
and make use of the fact, which follows from equations (3.4), that the
Pourier sine transform ot‘Ep 3] poc I8 identically equal to zero we
obtain the equation

AE)T (o) - BE)[eE T, (c8) - 2(1 - m)T (& )] =1, -1, , (3.26)

1

where the functions i‘(E), i (E) are defined by the integrals

L B3 (¢0) =#(1)7 (ge)a
LE) == ——ag, 1(§)-——/—5——1—§—-—i. (3.27)

w & +¢

Similarly if we take the Fourier cosine transform of both sides of

ecuation (3.25) and make use of the fact that [upJp _ o Vanishes for

all values of z, we obtain the equation
AE)I,(Ec) - B(E) [c &1 (c &) - 41 - m )11(05.)]= i, - ni . (3.28)

Solving the equations (3.26) and (3.28) we find that

i (&) &I (cE) 1,(g) (a)
Ag) = = > - (2 - ~— | B(&) = . (3.2
I (cE) {2 I(cg) ")} I (c®) 21 (o (0 %)

Substituting from equation (3.9) into the first of equations (3.27)
we £ind that 11(5) is related to g(t) through the equation

1 o g J
1,(g) =l-: f s(t)at/ ¢ain(ct)7,( ¢2)a . (3.30)

T g*+ ¢

The inner integral can be derived easily from entry (5) on p.10 of Vol.2
of Erdelyi (1954) and we find that

L@ -k ko) [ dwmnnzua. (3.531)
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Similarly, it is easily shown that

'2' 1 uj{sin ujjc o} + - gu Co8 u (o] l
1,08 =2 [ stu)fssmn(gu)o e, (o £) +x (o8] - & cosnlaulk a}du' "

If we substitute from equations (3.31), (3.32) into equations (3.29)
and thence into equation (3.11) we find that this last equation reduces to

the integral equation

g(t) - [ "K(t, u)g(u)a = h(t) (3.33)

[}

in which the kernel K(t, u) is defined by the equation

K(t, u) =f-z :{2 I‘;i:x;;cg) sinh ( £t)sinh ( Eu)

EK (c &)
+ ~—=t—e=— {4 cosh( Eu)sinh ( £t) + t cosh £t sinh guj} aEg.
I,(ck)

Now, using standard properties of Bessel functions (see Watson (1944)
PP.79-80), we have that

a [K (cE)] . Ki(ca)xi(ca) - I:(GE)KJ(O E)

a& I(ck) I'(c €)

[1,(c8) + I(c )] K (0&) +[K(c&) +K (&) ]I (cE)
If(c )

=--1§c

1
g1i(cx)

80 that

w sinh (£ t) sinh (£ u) dg © a [k (c&)
/ P = -/ — gsinh (Et)sinh(&u)a g,
o I(cg) o & |I(cg)

Integrating by parts, we can reduce this last term to
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© K (cg)
/ e {sinh( Et)sinh( Eu) + Et cosh(&t)sinh( Eu) +
o I(cg)
1
+ Eu cosh(Eu) sinh(&;t)} ag.
We therefore find that the kernmel K( t, u) 6f the integral
equation (3.33) is given by the equation
o
n K (c&)
K(t, u) = — ———— sinh ( £t)sinh (£ u) d€ (3.34)
L I(cg)
which may be written in the form
u 4+t u-t
K, w) = n(22E) - n(2st) (3.35)
where the function H( A ) is defined by the equation
2 o K (v)
H(A\) = -~ =t Y cosh( AV) =~ 1] dv. (3.36)
Tcdo I1 v)

342. Alternative Solution of Problem {a}.

In view of the recent interest in the solution of dual series
relations it is interesting to see that problem (a) can be reduced to
that of solving a pair of such equations and that the use of a method
of solution due to Sneddon and Srivastav (1963) leads to the same
integral equation,

If we insert the biharmonic function

x(p,2z)==-2y 2 A Tla (20 + k"z)e')‘“z I, (N p) (3.37)

N=y

into the equations (3.5) we find that it corresponds to an axisymmetrio
displacement vector with components
L
-A
u, =-Z Mo (1 -2n- 2 ) "a” I 0), (3.38)
LEX]
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o0
-\ 2z
u3 =2 Z ’An an(‘l -+ kn z)e” “n Jo()»n R (3.39)
LER]
The z-components of stress are then given by the equations
-]
- 2 - Az
o, = 2u z LS an(1 + knz)e Jo()s 0 P)s (3.40)
Naxgq
o0
3 - ANz
a:p=—2“z zxnane nt I (h, p). (3.41)
n=4

It is an immediate consequence of equations (3.38) and (3.41) that the
boundary conditions (3.4) will be satisfied provided that LR PRI
A _ s «s» are chosen to be the positive zeros of the function J1( re).
Similarly it follows from equation (3.41) that this choice of biharmonic
function automatically satisfies the boundary condition (3.1). The
remaining boundary conditions (3.2) and (3.3) are satisfied provided that

we can find constants a to satisfy the dual series equations

o0

2
Y i ead,0,0)
n=,

LS Jo(hn e)

r(p), O <p <1,

N
Q

0, 1<p

L\/Ja

3
L]
-

where the A 4 are the positive zeros of J1( A c). We can readily
transform these equations to the form considered by Sneddon and
Srivastav (1963)., If we multiply both sides of these equations by p
and integrate the first with respect to p from O to p and the second
from p to c we see that they are equivalent to the pair of dual series
equaticas

A, anJ‘(hnp) =PF(p), Osp<1, (3.42)

gl

3
L]
-
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[- -]
E:aanMw)zo, 1 ¢pxe, (3.43)
N=4¢
where X , M., ooy M, ..o &re the positive zeros of J1()»o) and
)
(o) = L [ uf(u) du, (5.40)
pdo
It has been shown by Sneddon and Srivestav (1963) that the
solution of these dual equations is
1
Bn="22 / u a(u)Ji(u)\ n)du, (3.45)
c JO( Ane) Yo

where

0
o) =) T, (Agp) ==

dp

’ 0<p<1, (3046)

.1 g(t) at
/P N(t* - %)

and g(t) is the solution of the integral equation (3.3) where K(t, u) is
the function defined by equations (3.10), (3.11) and

2 v ul t
n(t) == €' - F(au) duz =3/ —‘i—f-ZQL{l (3.47)
'S at Yo A(t° -u") w0 ¢(t° - u)

and so has the value given by equation (2.6). We therefore obtain the

same result as before.

3,3, Solution of Problem {a) in the case of constant internal pressure,

We now consider the case in which the crack is opened up by a
constant pressure p_. The corresponding value of h(t) is given by
equation (3.16) so that if we make the substitution (3.17) for g(t)
we f£ind that the relevant form of the integral equation (3.33) is

o(t) - j #(u) Ku, +) au= 2. (3.48)
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We begin by finding an iterative solution of this equation which
is useful in Qdiscussing problems in which c> > 1.

If we write
) =
p() =2 ) () (3.49)
e
L =0
then we have the iterative scheme
19
ho(t) = t, hr+1(t) =/° hr(u)K(u, t)du, (r =0,1, 2, «..) (3.50)

for the determination of the functions hr(t).
We now expand the kernel K(u, t) in powers of ¢~'. Using the

expansion

cosh u+t> v-cosh(‘l't)v
c )

3 3 5 3,3 5
_2uztvz+§ut+at)v4+§3ut+10u t +3ut’) e

c 3t 180 c*

7 5 3 3 5 7
+£u t +7u " + 7u’ ¢t +ut)ve+o(c-1o)’
2702¢ ®

we see that we may express K(u, t) in the form

- -
2r+
Rlay €)= ) gy (3.51)
Ir=0
where
W Zu{ uzT‘ QT u‘&_
a,(u) = T + + L 4 +...} R
! 72¢*0 % 3¢6%  60c* 252008

@) 2u ( uz'.'L‘6 u T
a (u) = T + + + ...},
3 }uzcsL 4 6c? 120c*
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u u Ta
as(u) =30w207 %6 + 662 +aoo}’
() = ——={ ]
a u - R—— T + o0
7 1260m° L ¢ ’
and we have written
o K (x) .
Ti :[ —tme Xl dXQ (3052)
° I1(X Cooke &

The values of the integrals Ti are listed :Ln['l‘ranter (1959).
From the form now taken by the function K(u, t) it follows easily
that the functions hr(t) may be written in the form

h (t) = z Pél;)H g28+1 (3.53)

s=1

Suppose, for example, that ¢ is sufficiently large to enable us to omit
powers of i higher than the seventh., The next iteration hr+1(t) may
then be obtained from equation (3.53) where the new coefficients will be
determined from the equation

"1 N
plr+) =j {P(r)u L) B(m)y P(r)ui; a,(u)du. (3.54)
J o 1 3 5 7 1
In the case of ho(t), the initial value, we take

P° =1, P, =0, 1i#1. (3455)

Then, to find the coefficients of successive iterations we need only
calculate the sixteen quantities

1
by r s e e, (5 =357 (5.56)

(4]
The gensral term h (t) will be given by (3.53) with Pj(_r ) satisfying the
recurrence relation

(r)_ (r - 1) (r-1) (r-1) (r - 1)
Pi=a, P +a5 4Py + a5 4% +ay 4P e (3.57)
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If we take
T, =2.50330, T, =3.77139, T = 23.431, T = 302.29
we find that
2 T4 Tﬁ T 0.3382 0.0509 0.0113
a =T s {ZT tTerT— 20t - 5} = 3t s * 7t
19t 3Igc 5¢  140c 7560¢ c c c
0.0026
+
c? ’
2 2T T T T 0.2029 0.0364 0,0088
a = —_— ety e 2 = + + +
391 2.3 2 4 6" 3 5 ?
e 5 21¢c 540¢ 27720c c c c
0.0022
+
c? ?
2 2T T T T 0.1449 0.0283 0.0072
- = —2 + Ay 2 + 2 = + + +
St 2 3 2 4 6y 3 s 7
n e 7 27¢ 660c 32760c c c c
0.0019
+ ’
c9
2 27T T 3T T : 0.4127 0.0232 0.0064
754 2 3 2 ) e (= st st 7t
3nc 3 11c 260c¢  12600¢c c c c
0.,0016
+ punllFt
c
2 : T T 0.08492 0,0528 0,0243
a = — {T‘ + 62 + 2 }: + + R
193 97¢ 10c 280c* e’ c’ ¢’
2 {T‘ Te 'l" 0.0510 00,0377 0.,0190
a 22 enmamemsme —_— + = -+ +
33 37%° L5 y420? 10800‘} e’ e’ o® '
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a
593

195

395

197

2 T‘ T T 0.0364 0,0293 00,0155
= — {—- 4ot —-—'—'} = + +
3re U7 54%  1320c* e’ e’ e’
2 T‘ Tc Ta 0.0283 00,0240 0,013
= z s {"' + 2 + ‘} = . + 7 + 5
9n°c" L 3 22¢ 520¢ c c c
1 Te 0.0264 0.0340
= 2 7 Te + 2 7 s 7
907 ¢ 10c c c
1 Eﬁ. T 0.0158 0,0243
= 2 7 { + 2 }" 7t s !
30w c 5 L2¢c c c
1 {Te Ta } 0.0143 0,0189
= emem——{ — = +
301r2c1 7 51;132 o’ c?® ’
1 ’_I‘& Te 0.0088 0.01547
= = + ’
725 907%’ {3 220‘} ¢’ e’
Ts 0.,0081
B 378017209 N c?® ’

4
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e

T 0,0049

-

a = =
2 9
397 63007°c c

T o 0.0035
a = = 3
527 8820n°c’ ¢’
Te 0.0027
a = = .
72T 44340 ne ¢’

For instance, it is easily shown that up to terms of order ¢,

Pi(o‘ =1, P“U) = a ,PU) = 8a ,PsLn = &a ,P‘Z) = & a +

191 3 1,3 145 1 191 191

E——

and the others may be neglected. Since

| #(t) = 2 Z p(r) 424

r, s

it follows from equation (3.19) that
p{r)

wi(c-1) = 3 E j 28 +1
] 28 +3

and we can easily show that

w1(x) =1 + 0,3382x> + 0,0815x> + 0,4144x%+ 0.0125x7 + 0(x®),
From the definition (3.22) we then have

Q (x) =1 ~0.3382x> - 0,1087x® - 0,1856 x° ~ 0,0219x7 + 0(x*)
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showing that, in the notation of equation (3.23), the critical velue of
the pressure for a crack radius a( << o) is given by the equation

Py = }f:x? {1 - 0.3382a2%/c* - 0,10872%/0® - 0.18562°%/c® -

- 0.0219a7 /o7 + 0(s° /c°)} i (3.58)

If we define a ratio 1'11 by the equation

()

Pop - P

2L« 100 (3.59)

II1 =

Por
so that II1 denotes the percentage change in the value of the coritical
pressure p, . from the wvalue p:;:) corresponding to a crack in an infinite

solid, then if ¢ > > a,
n = 33.822%/c® + 10.87a° /c® + 18.562°/c® + 2.19a/c” + 0(2®/c®). (3.59a)

These formulae are of use only if the ratio a/c is small, When
it is only slightly less than unity the integral equation (3.48) has to
be solved numerically. At first sight the solution ¢ (t) of this
equation would appear to depend only on t in the range O < ¢t < 1 but it
will be recalled that the kernel K(u, t), defined by equations (3.35) and
(3.36), depends on the value of g, the radius of the cylinder expressed
in terms of the radius of the crack as the unit of length, The
computations were carried out for the values ¢ = 1.05, 1.10, 1.20, 1.30,
1.6667, The values of the integral H(A) defined by equation (3.36)
were first calculated using Weddle's rule for numerical integration and
the integral equation itself was solved using the method of Fox and
Goodwin (195 ). The calculations were carried out on the DEUCE computer
in the Computing Laboratory of the University of Glasgow.

The results of the calculations of ¢(t) are shown in Table 3 and
graphically in Fig, 7., It will be observed that even for moderately
small values of ¢ (for instance greater than 1.20) the graph of the
funotion  ¢(t) differs very little from a straight line,

Using these velues of ¢ (t) and the formulae (3.18) and (3.19) we



b g

C R

[

48
Table 3. The variation with c and t of ¢ (t),
X 1,05 1.10 1,20 1.30 1.6667
12¢
1 .0893 .0785 .0690 .0639 0575
2 oA TH A57h 1382 1285 1 L1154 |
3 .2702 .2370 .2077 1926 a727 |
i
L 36352 3177 2777 2579 2304
5 4591 <3998 .3486 3227 2881
6 «5591 4833 L4204 .3890 <3460 !
7 6649 5726 | L4937 4551 L4039
8 1% L6639 | Lsess .5231 4621
9 9068 | 764 | L6463 5916 .5205
10 140556 | 8719 | 7272 6620 SYEL
1 1,205 1 L9965 8126 T3 L6330
12 1,530 j 1.4479 L9047 .8092 6972 |
Table 4. The variation of W/W n’ and n  with ¢/a.
had 1
¢a 1.05 1.10 1,20 1.30 1.66671 2.5 5.0
WW, | 1.9704| 1.6619] 1.3670) 1.2725 1.,0994 | 1.0205 | 41,0027
I, 33.3 26.9 1643 12,5 6.9 2.1 0.3
n, 140 80 42 27 9.5 2.3 0d3
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1.5*‘ Y T Y T Y 1 v Y - c=105
1
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i 4¢=110
10F i
" ¢=1.20
i ¢s130
; c=1667
oSt .
r
2 ] 2 1 N 1 N 1 . —l t
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Figure 7
Fig., 7 The variation with t and ¢ of the function #(t). (a is taken
to be unity).
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easily calculate the variation with a/c of the ratio W/W” where W
denotes the value of W corresponding toc = «» , i.e, to a value O of
the ratio a/c, so that

8p.(1~ n%)a’

oo 3 E

The results of these calculations are shown in Table 4 and graphically in
Pig. 8.

Toillustrate the variation of the critical pressure, Py DECESBETY
to cause the spread of the crack when its redius is a the ratio I
defined by equations (3.59), (3.23), (3.22) and (5.19) was calculated.
The results are shown in Table 4 and graphically in Fig. 9. Prom this
diagram it follews that the drop in the value of the criticzl pressure
p:; from the value Por corresponding to o crack in an infinite sclid is
less than 9% if ¢ > 2a and is less than 10% if ¢ > 1.ka,

If we look at the variation with a/c of the stress intensity factor
N we getl much the same kind of picture, To illustrate the variztion of N
we calculated n, the percentage increase in the stress intensity factor
due to the effect of the finite radius of the cylinder. The results are
shown in the last row of Table 4 and graphically in Fig. 10. The
effect of the finite value of the radius is more prcnounced in this case,
For instance if ¢ < 1.2a, the change in the stress intensity factor is
greater than 4,0%. However it is less than 5% if ¢ > 2a and is less than
10% if ¢ > 1.7a.

It is of interest %o compare these results with those obtained in
the analogous problem in plane strain, If we plot the ratio H1 as a
function of x, the ratio of the area of the crack to the cross-sectional
area of the cylinder (i.e. x = a®/c?) we get the curve shown in Fig. 11,
The curve II shown in the same diagram shows the value of the percentage
change in Por in the plane strain problem but here x is taken to be the
ratio of the length of the crack to the width of the strip, In Fig. 12
we show a comparison of n, the percentage increase in the stress intensity
Tactor in the axisymmetric case with n the corresponding quantity in the
plane strain case, x being given the same interpretation as before, Using
this basis of comparison we see that as far as an "engineering" approx-
imation is concermned the size effect in the axisymmetric case can be

gauged from that in the plane strain case,
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Figure 9

Fig., 9 The variation with c/a of m,, the percentage change in the value

(=)

»f the critical pressure Pep from the value Per

in an infinite solid.

58

{ c/a

corresponding to a crack
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120 | -

80} -

c/a

Figure 10

Fig. 10 The variation with c/a of n, the percentage increase in the
stress intensity factor due to the effect of finite radius of the

cylinder.
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Figure 11

Fig. 11 A comparison of the axisymmetric solution and the plane strain
solution. m is the percentage change in the value of the critical
pressure in the axisymmetric case with x equal to the ratio of the area
of the crack to the cross-section area of the cylinder; m is the analogous
quantity in the plane strain problem with X equal to the ratio of the

length of the crack to the width of the strip.

it S — T ———
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Figure 12
Fig. 12 A comparison of the axisymmetric solution and the plane strain
solution. n, is the percentage increase in the stress intensity factor
inithe axisymmetric case, n that in the plane strain case. (x is defined
as in Fig. 11).
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3eke _Sclution of Problem ‘b).

In the second of the two problems we shall consider the conditions
on the crack surface are the same as in the first problem but the
conditions on the curved surface of the cylinder are different, Instead
of assuming that the normal component of the displacement vanishes we
assume that the normal component of the stress vanishes, i.e. the
boundary conditions (3.4) are replaced by the conditions

5= apz=o, p=c, 0sz2< o (3.60)

If we take the form (3.6) for the stress-function X ( p, z) we

£ind that on the surface § = c the stress component ¢ = assumes the form
(o) 22 [ oferea -1 ee)]) + 2@ - 2ncer o) -
- L1 = )T () - o €T (08) ] Jconle 2)az
- 2p [mk"(c)e"gz {Jo(;c) -(1-2n) 24e) - gz x
° {c
[Jo(gc) AL Jac

o

If we take the Fourier cosine transform of both sides of this equation and

make use of the fact that EIpp]p o = 0and hence that 3(} Eappjp_c 3
z -)5} we find that i

AE))o&l (cE) - I,(ez)] + B(s)[(z -2n)cEI (c &) - 4(1 -n) x

I(ck)-ct 5211(05)3”513 + 11 -1 (3.61)
where 1 and i_ are defined by equations (3.28) and i  is defired by the
equation

bg  ¢P(g) I (¢e) ag

> . "+ ¢

. (3.62)
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Substituting the expression (3.9) for F( ) into equation (3.62),
interchanging the order of the integrations and making use of well-known
integrals involving Bessel functions (Cf. pp.10, 11 of vol.ii of
Erdelyi (1954) ), we find that

1, =2 f' a(u){sinh(zu) K{c&) - caK,(ca)] + Eu cosh(Eu) x

g

K(eg) | au. (3.63)

Solving the equations (3.61), (3.27) we find tha* the boundary
conditions (3.60) are satisfied if we choose A(£), B( &) to be given by
the expressions

$wA(g)G(cE) =EH(°E) -2+ 2n] j;g(u)iu cosh( Eu) du

+(_(3 -2n)H(c&) =4 +hn - o’ aﬂ/'z(u)sinh( gu) au,
° (3.60)

2 aB(E)G(cE) = qu(u)iu cosh( Eu) du +El - H(cg))/1g(u)sinh(gu)du
) ’ (3.65)

where the function G is defined by the equation

G(s) = szI:(s) -(2-2n+ sz)Ii(s) (3.66)

and the function H by the equation

-

- H(s) = szIo(s)Ko(s) +(2-2n+ 82)11(S)K1(S)- (3.67)

If we substitute from equations (3.64) and (3.65) into equation (3.14)
we find that this last equation reduces to the integral equation

() + 2 /':.(t, welu)du=h(t), Ot <1, (3.68)
T [+

for the determination of the funotion g(t), the kernel L(t, u) being
defined by the equation
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L(t, u) = -5-[: E(ﬂ'a)‘{ [H(o £) - ‘D[Eu cosh(E u)sinh( £+) + & tcosh(Et) x

sinh(Eu)] + [2H(ca) -34+2n =0° zﬂsinh(gu)sinh(e;t)

- E° utcosh(Eu) cosh(& t)} akg, (3.69)

The equations (3.68) and (3,69) are identical with those derived by
Collins ch. equations (3.13) and (3.14) of Collins (1962):) .
For small values of the constant ¢~' it is possible to solve
the integral equation (3.68) by an iterative procedure. To derive this
.

solution we need first to derive an expansion of L(t, u) in powers of ¢,
We find that

L) r
L(t, u) - z c-2r-5 Z Dr-n nt2n+1 u2r—2n+1 (3.70)
r=0 n=o ’
where
Dm, 0 = Dn,m: 2[(m +n + Z)Em,n- {Z(m +1)(n +1) +1 -n}%,n -
S CPRNCE I (3.71)
with
© 2m+2n+2
Em n = En m = 2 / = H(S)ds ’ (3072)
’ M a(2m +1)%2n +1)40 &(s)
and
o 2m+2n+2
F_=F _-= 2 / 2 ds. | (3.73)
’  g(2m +1)1(2n +1)4Jo G(s)

For a prescribed value of the Poisson ratio n the coefficients Em a and
H
Fm n have to be evaluated numeriaally for various values of m and n depending
”

on the order of the terms retained in the expansion on the right-hand side
of the equation (3.70).
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3e5s  Sclution of Problem ‘b} in the Oase of Oonstant Internal Pressure,

We now consider in more detail the case in which the internal
pressure in the crack is p  so that £(p) = P, /2y and h(t) = 1 /(7 )
and the integral equation (3.68) becomes

2 M pot
g(t) + - / L(t, u)g(u)du==—=, O0s t ¢ 1. (3.74)
T o Tu

Collins has obtained the approximaste solution

Pt 2D 2D 3 4 D?
g(t) == 1 - —2 _ ——2 (t2+_)+__.sm.
TU 3me 3nc 5 91rzc°

2 /D t* D ¥ D LD D 9
—— - i 22 ,,__.sLe.._:a(tz,,_)
3 5 7 9 7°c®

c 3 5 7 9 27 x°
L D D t t?
+ 2 10 { = (DOOD + 2 Dfo) -t
T e 9 15
2
DOODZO 46 D‘\O DOO D 11 LB |
+ + + + O(C ) (3175)
7 525 25

by the method of iteration,

Now by equations (3.13), (3.14) we find that the energy of the crack
is given by the equation

W o=b4ap 1 -7 )fitz(t)dt (3.76)

80 that in our units (in which the radius of the crack is taken to be the
unit of length)

2
- 2D D D2 2 [2D D
=lu-(1 n)PO[_J_‘* 10 +i_m._....(....iﬂ.,,?....u.)
3u 376> 5mc® 9r%c® ge’\ 7 25

16 D_D L (D 3D 2D 8 (2D D DD
- °:1: -— R R 2 |, —0 20 | |,
151°¢ ne 9 35 279*/) =w?o® 21 25

2

4 D*
b+ L 0(c™"! )} .
525
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In conventional units this becomes

10
W =

wn2yp2 a3 ‘ 3 .5 2 e 7
..8(1 n )poa{1 -dDooa -41) 2 +1+D°°a 2a /21320 3D

3 5 2 - +
3Ime 51c 9n? c® nc’\ 7 25
-] 9 3 40 2
16 D00D10a ha (DN) 3 D21 2 DOO >+ 88. 2 DOODZO . DOO_D_11 + MDH))
2

AP TR *
157 °¢ 7€\ 9 35 27 c 21 25 525

+ O(a“/c”)} . (3.77)

Applying the Griffith criterion (3.20) we find that the critical value of
P, is given by the formila

5

2D &’ 46D a° 237 10D D 8D D a
P _P(w) 1. 00 . j0 + —_ 20 m ), © 10
cr cr 3 5 cT 24 5

3mwc 15mc T 45#208

82° [ D 3D 8a'’ 2D D DD 2 D?
4 — __29_4_ 21 + QO;L_'_ oC - 10 +O(a”/c”)
mc® \ 9 35 37%c'° 21 25 24

(3.78)

where, as before, p&;’: {uET/Z(1 -nt )a}%.

In the case n = 0,2 we find that this formula takes the form

P.. = pg"l {1 - 0.2626 a°/c® = 0,0340 &°/c® = 0,4570 a’/c’ + 0.01762%/c°

+ O(ag/cg)} (3.79)

cr

If we define a percentage change II‘e in the value of the critical pressure
(=)

Par from the value Pop in the infinite case by equation (3.59) then we
£ind that
M, = 26,26 a°/c> + 3.40 a*/c® + 45.70 a'/c” + 0(a®/c%). (3,80)

2

Pormulee (3.79) and (3.80) should be compared with their counterperts
(3.58) and (3.59) derived for the boundary conditions of Problem (a). .
When s/c is not very small we again have recourse to numeriocal
integration of the integral equation, To facilitate the numerical
caloulations we transform the integral equation (3.68) by making the

)



el e NN GEEN WU SN GOSN B

61

substitutions

P 2¢
g(t) = ~— ¢ (t/o), K(t, w) == L(ot, cu), a=c™! (3.81)
U m

when it reduces in the case h(t) = pot/( 7 u) to the form

¢ (t) +/ K(t, u)¢(u)du=t, Osa<1 (3.82)

where the kermel is now given by the equation

K(u, t) = %/Q{EZH(::) -3 +2n = xzj sinh(u x)sinh(t x) -
T
- utx’ cosh(ux)cosh(tx) + x[H(x) - a[u cosh(u x)sinh(t x) +

+ t sinh(u x)cosh(t x)]}a?-x;)- (3.83)

with H(x) and G(x) defined by equations (3.66) and (3.67).
Prom equations (3.13) and (3.14) we find that the energy LB
required to open the crack is given (in conventional units) by the

equation
8 p(1-1?)
2 = E

- 8/
o® j to(t)at (3.84)

o

where a is the radius of the crack, so that the Griffith criterion (3.20)
that the crack may spread leads to the formula

Por = Pay 0, (a/0), (5.85)
with
0,(a) = | of/s) (3.86)
for the criticel value of the applied pressure, pg) being defined as before,

The percentage change Il in the value of pS> is therefre given

by the formula
7 ,=100 {1 - ng(a/O)} (3.87)



e GEES DN WD EN D R A an e

fye——

62

In a similar way equation (3.12) leads to the expreassion

1 -n®)dp a ‘
w’ (p) = 2 P, (x), O<x < a (3.88)
Y rE
with
y fe, ® (0ot [0 2 (5.89)
o = a/fc x= p/e Fx:—/ 3.89
’ R PR VT

for the normal displacement of the surface of the crack., If we write

41 - n%)p_a
b = 2 (3.90)
B

which is the walue of u s at the origin of coordinates in the case
c>> a we see that we can write equation (3.88) in the form

u? (o) = F, (x). (3.91)

The percentage increase n, in the stress intensity factor can be
calculated by means of equation (3.60). We find that

n_ ={M_ 1} x 100, a = a/c. (3.92)
a

The variocus functions were computed for the value n = 0,25,

The variation of ¢ (t) with t for six values of a is shown
in Table 5 and graphically in Fig, 13, while that of F, (x) for 0 s x < 1
and the same values of o is shown in Table 6 and Fig. 14. The
variation of the function Q,(a/c) i.e, of the ratio p, Jpg:) is given
by the second row of Table 7, Fig, 15 shows the variation of the
oritical pressure p with the ratio a/c, The values of the other
quantities of physical interest I, and n, are also listed in Table 7,

To illustrate the differing effects of the two kinds of boundary
conditions on the cylindrical surface - those considered here and those
considered in problem (a) ~- the variation of O and 0 is shown in
Pig, 16 and that of n and n, is shown in Pig. 17.

Using either of these quantities as a measure of the effect of the
finite radius of the cylinder we see that if a > % o the effect is more
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Table §:

Values of the function ¢ (ra/12) (n = 0.25).

63

¥ 0.2 0.3 0.5 0.7 0.8 0.9
r
1 0,072 0.093 0.128
2 0.033 0.054 0,089 RPN 0,186 04256
3 0,216 0.280 0.385
k4 0,067 0,101 0179 0.288 0.375 0.519
5 0.360 0.468 0.651 '
6 0.100 0.152 0.267 0.3l 0.566 0.795
7 0,504 0.660 0.932
8 04134 0.203 0.358 0.576 0.758 1,031
9 0.647 0.853 1.203
10 0.167 0.253 0.443 0.721 0.957 1.356 :
1 0,793 1,054 1.577
12 0.20t 0.304 0.536 0.884 1,183 1.802







Table 6: Values of the funotin P (re/12). (n = 0.25),
-
a 0.2 0.3 0.5 0.7 0.8 0.9
N
Wo 14004 1.014 1.070 1,238 1.418 1.789
1 1,234 1414 1784
2 0.990 1,000 1.055 1,224 1,400 1.768
3 14199 1.376 14742
L 0.947 0.956 1.008 1.168 14342 1,70k
5 1,127 1.297 14654
3 0.869 0.878 0.926 1.074 1.239 1.587
7 1.009 1.166 14504
8 0.748 0.755 0.795 0.926 1,073 1.39
9 0.822 0.955 14254
10 0.554 0.560 0.589 0,688 0.802 14064
" 0,496 0.579 0 774
12 0,000 0,000 04000 0,000 0,000 04000
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Figure 1k

Fig. 1,  The variation with X and a of the function Fa(x) for constant

P, and n = 0.25.
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Table 7: The variation of 0, N, endn, with afc. (1 = 0.25).
—
a/c 0.2 0.3 0.5 0.7 0.8 0.9
Q, | 0.998 0.993 0.965 0,89 0.822 0,707
!
n, | 0.2 07 | 3.5 | 10 7.8 | 29.3
l | 3
n, | 0.5 1.3 7.2 . 259 47.9  © 100,2
i I
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Fig. 15 The variation with pcr/pcr(m) with a/c in the case n = 0.25 and

for constant pressure on the crack surface.
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Figure 16

Fig. 16 The variation with a/c of the percentage increase in the critical
pressure for constant pressure on the crack surfaces. The curve T corresponds
to the case in which ug = 0 on the cylindrical surface and is independent of
n; the curve w, corresponds to the case in which opp = 0 on the cylindrical

surface andn= 0,25,
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Figure 17

Fig. 17 The variation with a/c of the percentage incre ase in the

stress intensity factor for constant pressure on the cra.ck surfaces.

The curve ny corresponds to the case in which u 0 = 0 m the cylindrical sur-
face and is independent of nj the curve n, corresponds twothe case in

which %o = 0 on the cylindrical surface and n = 0.25,
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pronounced in the case in which the radial component of the surface
displacement of the cylinder is zero,

326,  Solution of Problem (b) in the Case of a Variable Internal Pressure.

To illustrate the effact of the application of a variable pressure to
the surfaces of the crack the numerical caloulations were repeated for the
case in which 2

P o
f(p),-a(1--;> s Ospct. (3.93)

2u c

In this case the free term of the integral equation (3.68) assumes the
form

pe [t 2t .
h(t) = - - ""? . ‘ (3-914-)
Ty c c

If we insert this value for h(t) into equation (3.68) and make the
transformations (3.81) we find that the function ¢ (t) is a solution of
the integral equation

¢<+.>*[ K(t, u) ¢ (Wau= t - § ¢ (3.95)

(]

where the kernel K(t, u) is given by the equation (3.83).

Numerical solutions of this equation were obtained for the four
velues 0,2, 0.5, 0.7 and 0.9 of a =a/c and for n = 0.25. The results
are given in Table 8 and are illustrated graphically in Fig. 18, The
function F a (x) defined by equation (5.89) was also calculated for these
four values of « , The results are shown in Table 9 and graphically in
Fig. 19. Here the upper curves show the distribution of pressure on the
crack surface and the. lower curves give the resulting shape of the crack;
the length b, the depth of the orack in the case a << ¢, is defined by
equation (3.90),

The quantities €, and n, which are defined by equations (3.86)
and (3.92) and from which can be derived the critical pressure and the
percentage increase in the atress intensity factor, were calculated for
these four values of the ratic /0. The results are shom in Table 10,
In compering these results with those corresponding to constant internal
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Table 8: Values of ¢ (ra/12), the solution of the integral equation

O e et et pesd s e eees U MEm N R B B S W e —

(3.95) for four values of a .

1
2 0.033 0.088
3
b 0.067 0.175
5
6 0.100 0.255
7
8 0.132 0.331
9

10 | 0.164 0.392

|
1
12 0.195 0.500

0.330

0.389

0.440

0.491

0.527

0.570

0.588

0.617

0.9

0.110

0.219

0.325

0.430

0.525

0.621

0.700

0.791

0.840

0.930

0.949

1.002
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Figure 18

Fig. 18 The variation with t and a of the function ®(t) for a
pressure ;g(l- p2/b2) on the crack surfaces and m = 0.25.
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Table 9: Values of the function F, (ra/12) defined by equations

_(3!,89) and (3.95) for four values of o .

MR b b peesd  pemd

x 0.2 0.5 0.7 0.9
0 0.995 1.008 1,082 1347
1 1.077 1.3
2 0,981 0,991 1,064 1.321
3 1.035 1.289
4 0.936 0.938 0.998 14243
5 0951 1.185
6 0.858 0.848 0.892 1.912
7 0.824 1.026
8 0.736 ‘ 0.712 0.737 0.923
9 | 0.638 0.801

10 0.543 » 0.512 0.518 0.653

11 0,361 0.453

12 0.000 0,000 0,000 0.000
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Fig. 19 The shape of the crack for four values of a/c when the pressure
is P (l-p /c ) and m = 0,25, The upper curves show the distribution of.
pressure on the crack surface and the lower curves the corresponding shape

of the crack. [b = h(l-f,)p a/nE).
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Table 10:

The veriation of the funotions Q , I and n_with 8/c

when the internal pressure is p°(1 -p2/fc?),

(n = 0.25).

a/c 0.2 0.5 5 0.7 1 0.9
Q, 1,011 14055 1.065 0,948
n 1.5 20 31 142
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pressure (Table 7 above) it should be noted that in the second case the
average pressure on the crack is

2p°a'2 /

Yo pi/etIapan, [1 - )7

(o}

so that if a is nearly equal to ¢ the average pressure is appreciably

less than p 0®
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